This is the part of the exam Introduction to Mathematics dealing with Modular Arithmetic. It consists of 3 problems, for which you can score in total 9 points. Your final grade for Modular Arithmetic will be one plus the number of points you obtain.
(1) (a) [1 point $]$ How many elements x from the set $\mathbb{Z} / 42 \mathbb{Z}$ satisfy $x^{2}=x$? Explain your answer.
(b) [2 points] Show that for any integer n, the only unit u in $\mathbb{Z} / n \mathbb{Z}$ satisfying $u^{2}=u$ is $u=1 \bmod n$.
(2) (a) [1 point] Suppose that the integers n, m are not both 0 . Show that the set of common divisors of n and m is equal to the set of divisors of $\operatorname{gcd}(n, m)$.
(b) [2 points] Suppose that the integers a and b are not both 0 , and also that the integers b and c are not both 0 . Show that $\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.
(3) [3 points] Show, for example using mathematical induction, that for any integer $n \geq 0$ one has

$$
(1+4)^{2^{n}} \equiv 1+2^{n+2} \bmod 2^{n+3}
$$

(Note that the exponent on the left is 2^{n}, not $2 n$.)

